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ABSTRACT This article describes the numerical solution of the time-dependent Smoluchowski equation to study diffusion in
biomolecular systems. Specifically, finite element methods have been developed to calculate ligand binding rate constants for
large biomolecules. The resulting software has been validated and applied to the mouse acetylcholinesterase (mAChE)
monomer and several tetramers. Rates for inhibitor binding to mAChE were calculated at various ionic strengths with several
different time steps. Calculated rates show very good agreement with experimental and theoretical steady-state studies.
Furthermore, these finite element methods require significantly fewer computational resources than existing particle-based
Brownian dynamics methods and are robust for complicated geometries. The key finding of biological importance is that the rate
accelerations of the monomeric and tetrameric mAChE that result from electrostatic steering are preserved under the non-
steady-state conditions that are expected to occur in physiological circumstances.

INTRODUCTION

Diffusion plays an important role in a variety of biomolec-

ular processes, which have been studied extensively using

various biophysical, biochemical, and computational methods.

Computational models of diffusion have been widely studied

using both discrete (1–5) and continuum methods (6–11).

The discrete methods concentrate on the stochastic processes

based on individual particles, which include Monte Carlo

(5,12–14), Brownian dynamics (BD) (15–17), and Langevin

dynamics (18,19) simulations. Continuum modeling de-

scribes the diffusional processes via concentration distribu-

tion probability in lieu of stochastic dynamics of individual

particles. Comparing with the discrete methods, continuum

approaches need not deal with the individual Brownian

particles and the computational cost can be substantially less

than for the discrete methods.

In previous work with continuum methods, Song et al.

(9,10) have presented finite element methods for solving the

steady-state Smoluchowski equation (SSSE), which de-

scribes the steady-state behavior of diffusion-limited ligand

binding. These methods have been shown to be significantly

more efficient than traditional BD approaches for evaluating

reaction rate constants for diffusion-limited binding of

simple ligands. Recently, Zhang et al. (20) applied this

approach for studies of several conformations of tetrameric

mouse acetylcholinesterase (mAChE). However, the SSSE

solution only provides the answer at the time-independent

stage of diffusion. In other words, we only obtain the con-

centration distribution and rate constant when diffusion and

reaction between the ligand and the enzyme reach the steady

state. Physiological conditions, however, can be expected to

include non-steady-state kinetics. One possible way to study

the diffusion dynamics on biomolecular interface binding

energy landscape is mean first-passage time, which was

introduced recently by Wang et al. (21). The theory suggests

a way of connecting the models/simulations with single

molecule experiments by analyzing the kinetic trajectories.

However, it is still an open question for the diffusional

problem in a large spatial and timescale.

In the present work, we apply adaptive finite element

methods to solve the time-dependent Smoluchowski equa-

tion (TDSE), using a posteriori error estimation to iteratively

refine the finite element meshes. The binding of charged and

noncharged ligands to mAChEs has been described at each

timestep. The diffusion results have been compared with

those from steady-state Smoluchowski diffusion studies and

experimental results. AChE is a serine esterase that termi-

nates the activity of acetylcholine (ACh) within cholinergic

synapses by hydrolysis of the ACh ester bond to produce

acetate and choline (22). Hydrolysis of ACh occurs in the

active site of AChE, which lies at the base of a 20 Å-deep

gorge within the enzyme. The rate-limiting step of ACh

hydrolysis by AChE is the diffusional encounter (23–25),

making the system a popular target for both experimental

(26–28) and computational diffusion studies (29,30).
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THEORY AND MODELING DETAILS

Our time-dependent SMOL solver (http://mccammon.ucsd.edu/smol/

index.html) models the diffusion of ligands relative to a target molecule,

subject to a potential obtained by solving the Poisson-Boltzmann equation. It

is perhaps most easily explained by initially considering motion of an

ensemble of Brownian particles in a prescribed external potential WðR~Þ
(R~being a particle’s position) under conditions of high friction, where the

Smoluchowski equation applies.

Boundaries and initialization of the
time-dependent Smoluchowski equation

The starting point for development of the time-dependent SMOL solver is

the steady-state SMOL solver described by Song et al. (9,10). The original

Smoluchowski equation has the form of a continuity equation,

@pðR~; tÞ
@t

¼ �~= � j~ðR~; tÞ; (1)

where the particle flux is defined as

j~ðR~; tÞ ¼ DðR~Þ½~=pðR~; tÞ1 b~=WðR~ÞpðR~; tÞ�

¼ DðR~Þe�bWðR~Þ
=e

bWðR~Þ
pðR~; tÞ: (2)

Here pðR~; tÞ is the distribution function of the ensemble of Brownian

particles, DðR~Þ is the diffusion coefficient, b ¼ 1/kBT is the inverse

Boltzmann energy, kB is the Boltzmann constant, T is the temperature, and

WðR~Þ is the potential of mean force (PMF) for a diffusing particle due to

solvent-mediated interactions with the target molecule. For simplicity, DðR~Þ
can be assumed constant. The two terms contributing to the flux have clear

physical meanings. The first is due to free diffusional processes, as quantified

by Fick’s first law. The second contribution is due to the drift velocity,
~=WðR~Þg, induced by the systematic forces, ~=WðR~Þ, and friction quantified

by the friction constant g. The relation between diffusion coefficient D and

friction constant g is given by Stokes-Einstein equation: Dbg ¼ 1.

The TDSE can be solved to determine biomolecular diffusional en-

counter rates before steady state is established. Following the work of Song

et al. (9,10) and Zhou et al. (31–33), the application of the TDSE to this

question involves the solution of Eq. 1 in a three-dimensional domain V,

with the following boundary and initial conditions. A bulk Dirichlet condi-

tion is imposed on the outer boundary Gb � @V,

pðR~l; tÞ ¼ pbulk; for R~l 2 Gb; (3)

where pbulk denotes the bulk concentration at the outer boundary. A reactive

Robin condition is implemented on the active site boundary Ga � @V,

nðR~0Þ � =pðR~0; tÞ ¼ aðR~0ÞpðR~0Þ; for R~0 2 Ga; (4)

providing an intrinsic reaction rate aðR~0Þ. Here, nðR~0Þ is the surface normal.

For the diffusion-limited reaction process, such as ACh hydrolysis by mAChE,

the concentration of ACh at the binding site is approximately zero. Therefore,

the reactive Robin condition on the inner boundary can be simplified as

pðR~0; tÞ ¼ 0; for R~0 2 Ga: (5)

For the nonreactive surface parts of the inner boundary Gr � @V, a

reflective Neumann condition is employed:

nðR~0Þ � jpðR~0; tÞ ¼ 0: (6)

Finally, we set up the initial conditions as

pðR~; 0Þ ¼ pbulk jR~j ¼ l
0 jR~j, l

:

�
(7)

Therefore, the diffusion-determined biomolecular reaction rate constant

during the simulation time can be obtained from the flux j~ðR~; tÞ by inte-

gration over the active site boundary, i.e.,

kðtÞ ¼ p
�1

bulk

Z
G

nðR~Þ � j~ðR~; tÞdS: (8)

Finite element discrete formulation

To numerically solve the TDSE, we employed the Galerkin finite element

approximation to discretize the differential equation (34). The original

TDSE (Eq. 1) can be written as described below (10,35,36).

Let V � R3 be an open set, and let @V denote the boundary, which can

be thought of as a set in R2. Consider now the TDSE, a member of the class

of elliptic equations

�= � ðaðR~; tÞ=uðR~; tÞÞ1 @pðR~; tÞ
@t

¼ 0 in V;

pðR~; tÞ ¼ 0 for R~ 2 Ga;

nðR~Þ � pðR~; tÞ ¼ 0 for R~ 2 Gr;

pðR~; tÞ ¼ pbulk for R~ 2 Gb; (9)

where aðR~; tÞ ¼ DðR~Þe�bWðR~Þ and uðR~; tÞ ¼ ebWðR~ÞpðR~; tÞ.
According to Holst et al. (37), the solution to the original problem also

solves the problem

Find u 2 �u 1 H
1

0ðVÞsuch that ÆFðuÞ; væ ¼ 0"v 2 H
1

0ðVÞ;
(10)

where u is the approximate solution found by the numerical method, �u is

a trace function satisfying the Dirichlet boundary conditions, and H1
0 is the

test function space (37,38). The ‘‘weak’’ bilinear form ÆF(u), væ is given by

ÆFðuÞ; væ ¼
Z

V

a=v � =u 1
@u

@t
v

� �
dx: (11)

We have used the fact that a boundary integral vanishes because the test

function v vanishes on the boundary.

For a discrete solution to Eq. 11, taking spanff1, f2, . . . , fNg � H1
0(V),

Eq. 11 reduces to a set of N nonlinear algebraic relations (implicitly defined)

for N coefficients fajg in the expansion:

uh ¼ +
N

j¼1

ajfj: (12)

According to the Galerkin approximation, N equals the number of finite

element nodes.

Therefore, the corresponding ‘‘weak form’’ of the TDSE is

Find uh � �uh 2 H
1

0 such that ÆFðuhÞ; viæ ¼ 0"vi 2 H
1

0 : (13)

To obtain an unconditionally stable solution, two implicit algorithms

have been implemented in our codes: Crank-Nicolson and backward Euler’s

methods.

Finally, the concentration distribution can be obtained by pðR~; tÞ ¼
e�bWðR~ÞuðR~; tÞ.

A posteriori error estimation and mesh refinement

As described by Holst et al. (37), the adaptive mesh refinement procedure

follows a solve-estimate-refine algorithm and has been implemented in

the FEtk software (http://www.fetk.org/). Because of the inefficiency to
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‘‘estimate’’ and ‘‘refine’’ in each time step, we only estimated and refined

the mesh while solving the SSSE. With the refined mesh, TDSE diffusion

studies were implemented. In the ‘‘estimate’’ step, we introduced the

a posteriori error estimator hs below holding for a Galerkin approximation

uh satisfying

ku� uhkH
1ðVÞ#C0 +

s2S

h
2

s

� �1=2

; (14)

where C0 is a constant and the element-wise error indicator hs is defined as

hs ¼ h
2

sk= � ða=uhÞk2

L
2ðsÞ1

1

2
+
f2s

k½nf � ða=uhÞ�fk
2

L
2ðfÞ

� �1=2

;

(15)

where hs and hf represent the diameter of the simplex s and the face f,
respectively. The expression f 2 s denotes a face of simplex, [v]f denotes the

jump across the face of function v, and the Lebesgue norm is

k= � ða=uhðrÞÞk ¼ De�bWðrÞk= � =uhðrÞ � b=W � =uhðrÞk:
(16)

The entire ‘‘solve-estimate-refine’’ cycle is repeated until the global errorffiffiffiffiffiffiffiffiffiffiffi
+

s
h2

s

q
is reduced to an acceptable user-defined level.

Potential of mean force (PMF) input

Currently we provide two options to map the PMF to each finite element

node in the time-dependent SMOL solver code. First, it can input the PMF

obtained by boundary element methods (39,40). The PMF corresponds to

the electrostatic potential obtained by solving the Poisson-Boltzmann

equation. Second, APBS 0.4.0 (http://sourceforge.net/projects/apbs) is used

to calculate the PMF, which is the potential field W(r) in Eq. 2 (36). The

partial charges and radii of each atom in the mAChE monomer and tetramer

molecules have been assigned using the CHARMM22 force field, and the

dielectric constant is set as 4.0 inside the protein and 78.0 for the solvent.

The solvent probe radius is set as 1.4 Å, and the ion exclusion layer is set as

2.0 Å. Ionic strengths varying between 0 and 0.67 M were used in the PMF

calculations and following diffusion studies.

To allow the potential to approach zero at the outer boundary, a large

space of 40 times the radius of the biomolecule is required. A series of nested

potential grids is constructed in a multiresolution format where higher

resolution meshes provide PMF values near the molecular surface while

coarser meshes are used away from the molecule. The dimensions of the

finest grid are given by the psize.py utility in the APBS software package,

and the coarsest grid dimensions are set to cover the whole problem domain

plus two grid spacings (to allow gradient calculation) in each dimension. The

setup for the rest of the grid hierarchy is calculated using a geometric

sequence for grid spacing. For mAChE monomer, the finest grid has

dimensions of 86.3 Å 3 76.4 Å 3 101.4 Å with 161, 129, and 193 grid

points in each direction, respectively. This corresponds to a 0.5 Å 3 0.6 Å 3

0.5 Å grid spacing setup. The coarsest grid has dimensions of 3400 Å 3

3000 Å 3 4300 Å with 161 grid points in each direction. The corresponding

grid spacing settings are 21.1 Å 3 18.6 Å 3 26.7 Å.

Adaptive finite element mesh generation

For the mAChE monomer case, similarly with previous studies (9,10), we

used a mouse AChE (mAChE) structure adapted from the crystal structure of

the mAChE-fasciculin II complex (26) and perturbed by Tara and co-

workers via molecular dynamics simulations with an ACh-like ligand in the

active site gorge (30) to produce gorge conformations with wider widths

than the original x-ray structure. The diffusing ligand was modeled as a

sphere with an exclusion radius of 2.0 Å and a diffusion constant of 7.8 3

104 Å2/ms. This perturbation was necessary for computational diffusion

simulations with a fixed biomolecular structure. Reactive boundaries were

defined using the biomolecular surface, which is the same as that used in

Song et al. (10).

For the mAChE tetramer cases, we used three structures: a loose, pseudo-

square planar tetramer with antiparallel alignment of the two four-helix

bundles and a large space in the center (PDB: 1C2B); a compact, square

nonplanar tetramer with parallel arrangement of the four-helix bundles that

may expose all the four t peptide sequences on a single side (PDB: 1C2O);

and in addition to the crystal structures, an intermediate structure (INT) was

generated by morphing the two crystal structures using the morph script in

visual molecular dynamics (41). Reactive boundary definitions are the same

as the above mAChE monomer case.

The tetrahedral meshes were obtained and refined from the inflated van

der Waals-based accessibility data for the mAChE monomer and tetramers

using the level-set boundary interior exterior-mesher (42–44). Initially the

region between the biomolecule and a slightly larger sphere centered about

the molecular center of mass, was discretized by adaptive tetrahedral

meshes. It generated very fine triangular elements near the active site gorge,

while coarser elements everywhere else. The mesh is then extended to the

entire diffusion domain and the inside of the biomolecule with spatial

adaptivity in that the mesh element size increases with increasing distance

from the biomolecule. The number of tetrahedral elements varies from

50,000 to 70,000 for different tetramer geometries.

RESULTS AND DISCUSSION

Validation of the time-dependent SMOL code
with a spherical test case

Before applying the time-dependent SMOL program to a

biomolecular system with complicated geometries, we first

tested it with the classic spherical system (45) and compared

the calculated result with the known analytical solution. For

this test case, we chose a diffusing sphere with a 2 Å radius

and neutral charge. The entire problem domain is a sphere

with a 400 Å radius, which was discretized with 745,472

tetrahedral elements. A detailed view of the surface mesh for

the stationary sphere is also shown in Fig. 1. The time-

dependent Smoluchowski equation then becomes the

Einstein diffusion equation. The diffusing particle’s dimen-

sionless bulk concentration was set to 1. Ignoring hydrody-

namic interactions, the diffusion constant D is calculated as

7.8 3 104 Å2/ms using the Stokes-Einstein equation with a

hydrodynamic radius of 3.5 Å, solvent viscosity of 0.891 3

10�3 kg/(m � s), and 300 K temperature.

Analytical solution

For a spherically symmetric system without external poten-

tial, the TDSE can be written as

@p

@t
¼ �1

r
2

@

@r
ðr2

JpÞ ¼ �1

r
2

@

@r
r

2
D
@p

@r

� �

with boundary conditions

pðr0Þ ¼ pbulk;

where r0 is the radius for the outer boundary. The analytical

expression for the concentration distribution is
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pðr; tÞ ¼ pbulk 11
2r0

pr
+
N

n¼1

ð�1Þn

n
sin

npr

r0

exp �D
np

r0

� �2

t

" #( )
:

This analytical form of the solution was expressed by the

sum of zero-order spherical Bessel functions. Fig. 1 presents

the concentration distributions during the simulation time

with our TDSE solver, comparing with the above analytical

solution.

SMOL numerical solution

According to Fig. 2, the performance of the SMOL program

is good, with almost the same concentration distribution as in

the analytical solution. It must be noted that the analytical

solution for the time-dependent diffusion with the Columbic

potential cannot be addressed with a simple formula; how-

ever, we have implemented our solver to test the same

steady-state case addressed in Table 1 of Song et al. (10), and

obtained very consistent results.

Application of the TDSE solver to mouse
acetylcholinesterase monomer

One of the major advantages of continuum methods such as

the time-dependent SMOL solver is the ability to simulate

the complete diffusion dynamics for large biological systems

with complicated geometries with significantly lower com-

putational cost than the Brownian dynamics approach. This

section demonstrates the implementation of TDSE to study

the ligand binding kinetic process of the mAChE monomer

under various ionic strength conditions (46).

With the original mesh, we measured the diffusion-

controlled reaction rates during the simulation time with the

timestep at 50 ps, as shown in Fig. 3. Separate calculations

were performed at ionic strengths of 0.000, 0.050, 0.100,

0.150, 0.200, 0.250, 0.300, 0.450, 0.600, and 0.670 M. At

the zero ionic strength, the whole system reaches the steady

state in over 15 ns. The value of kon at the end of the sim-

ulation is 9.535 3 1011 M�1 � min�1, which is very con-

sistent with the experimental value at (9.80 6 0.60) 3 1011

M�1 � min�1 (27). Meanwhile, the kon value for the neutral

ligand at the steady state is 9.297 3 1010 M�1 �min�1, which

is consistent with the previous steady-state calculations (20).

Table 1 (this article) listed the final kon value derived from

the TDSE calculations and the corresponding sets from

SSSE calculations (9). When the ionic strength becomes

higher, the time to reach the steady state decreases substan-

tially. Obviously, we have obtained consistent results,

comparing with the previous SSSE and BD calculations.

Furthermore, our TDSE solver can report all the ligand con-

centration distribution histories during the 20 ms simulation.

FIGURE 2 Time evolution of the two-dimensional con-

centration distribution contour in the problem domain. (a)

Our SMOL solution; (b) spherical analytical solution.

FIGURE 1 Illustration of the discretized problem domain for the spherical

analytical test. The green represents the outer boundary, in which the ligand

concentration is kept as a constant.
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In this case, we recorded a concentration distribution every

100 timesteps (5 ns) and a restart checkpoint every 1000

timesteps (50 ns). Fig. 4 demonstrates the two-dimensional

concentration distribution around the mAChE molecule at the

end of 20 ms simulation. The origin and the normal of the clip

plane have been set at (0 16.6 Å 0) and (1 0 1), respectively.

The value kon exhibits an ionic strength-dependence strongly

indicative of electrostatic acceleration. The high ionic strength

environment lessens the electrostatic interactions between the

active site of mAChE and the ligand. Therefore, the relatively

low ligand concentration area shrinks while ionic strength

increases. Specifically, at 0.150 M ionic strength, several

dynamic snapshots have been plotted, as depicted in Fig. 2.

These snapshots demonstrate the whole diffusion process of

ACh-like ligands from the area far from the enzyme until they

reach the active site and react and disappear.

In this section, we explore the use of the adaptive finite

element methods to implement TDSE calculations on the

mAChE monomer. The first step is to interactively solve

the SSSE based on the a posteriori error estimation (10,37).

The iterative error-based refinement of the initial 656,823-

simplex mesh was performed until the global error is less than

a value chosen to provide reaction rates that did not change

appreciably upon further refinement. The refined mesh has

824,746 simplexes at 150 mM ionic strength. Then, we

implemented another TDSE calculation with the refined mesh.

Fig. 5 shows the kinetic curves of both the original and refined

mesh. Again, the two calculations are in good overall agree-

ment but do show some differences at the final steady state.

Specifically, the refinement of the adaptive meshes shows a

little increase of the kon value after reaching the steady state.

Application of the TDSE solver to
mAChE tetramers

A previous SSSE study described the effect of electrostatic

forces on ACh steady-state diffusion to the mouse acetyl-

cholinesterase tetramer (20). Here, we extend the previous

study using the same meshes and potential files with our

time-dependent SMOL solver. The time step for the three

tetramer models was set at 10 ns, and concentration histories

FIGURE 3 kon(t) values in time-dependent ACh diffusion under the

various ionic strength conditions.

TABLE 1 SSSE reaction rate and TDSE final reaction rate

constants as a function of ionic strength

Ionic strength (M) 0.000 0.025 0.100 0.300 0.600

SSSE results kon

(1011 M�1 min�1) 9.562 3.681 2.304 1.572 1.302

TDSE final results kon

(1011 M�1 min�1) 9.535 3.673 2.298 1.569 1.298

FIGURE 4 Two-dimensional ligand concentration dis-

tribution contour around mAChE at the steady state under

various ionic strengths. The red color represents high

concentration area, while the blue represents low concen-

tration area.
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were recorded every 100 steps. Two crystal structures (1C2O

and 1C2B) and an intermediate structure (INT) are all stud-

ied by solving the TDSE. The actual conformational dy-

namics of the mouse acetylcholinesterase tetramer has been

neglected in this work.

Fig. 6 a shows the time-dependent rate constant per active

site at 0.150 M ionic strength for the above three mouse

acetylcholinesterase tetramer structures. It takes .75 ms for

each active site to reach the steady state. For structure 1C2O,

the entrances to two of the four active gorges (AS2 and AS4)

are partially blocked by another subunit in the complemen-

tary dimer, while the other two gorges are completely

accessible from outside (AS1 and AS3). As a result, the four

kinetic curves in 1C2O can be classified into two subgroups:

one subgroup corresponds to active site 1 (AS1) and active

site 3 (AS3), in each of which the gorge is open, and at the

end of the simulation, the reaction rates are 1.61 3 1011 M�1

min�1 and 1.50 3 1011 M�1 min�1, respectively. Another

subgroup corresponds to active site 2 (AS2) and active site 4

(AS3), where the gorges are sterically shielded by nearby

subunits, and the final reaction rates are 8.47 3 1010 M�1

min�1 and 9.62 3 1010 M�1 min�1, respectively, which is a

little more than half of that for AS1 or AS3. Fig. 6 b
demonstrates the kon(t) values for the neutral ligand.

Comparing with the 11.0e charged ligand, the neutral

ligand still shows similar time-dependent curves for indi-

vidual active sites, while the kon(t) value is much less than the

corresponding 11.0e charged case.

Similarly, we tested the final steady-state concentration

distribution in the diffusion domain under various ionic

strength conditions for the AChE tetramers. For example,

Fig. 8 illustrates the different concentration profiles at 0.025,

0.050, 0.100, 0.300, 0.450, and 0.670 M ionic strength

solutions for structure 1C2O. Comparing with the monomer

case, the ACh-like ligand concentration around the 1C2O

molecule is much lower when the ionic strength is small, due

to the stronger electrostatic attraction between the ligands

and the tetramer molecule. While the ionic strength becomes

higher, the electrostatic effect on the steady-state concentra-

tion distribution turns out to be weaker.

We also obtained the time-dependent rate constant per ac-

tive site for the structure 1C2B, in which all the four gorges

are nearly completely accessible to the solvent (Fig. 7). The

profiles of kon(t) of AS3 and AS4 are almost the same, while

the value of the final steady state for AS1 or AS2 is a little

smaller, but still above 1.10 3 1011 M�1 min�1. The sum of

the four active sites is 5.28 3 1011 M�1 min�1, whereas the

total steady-state kon in structure 1C2O is 4.92 3 1011 M�1

min�1. It must be noted that the steady-state kon in the

FIGURE 5 The time-dependent ligand concentration

distribution at 0.150 M ionic strength for the mAChE

monomer.

FIGURE 6 The comparison of kon values in time-dependent ACh

diffusion between the original and refined meshes.
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mAChE monomer is 1.97 3 1011 M�1 min�1 at 0.150 M

ionic strength. Therefore, the average reaction rate per active

site for the tetramer is ;64% that of the monomer, which is

close to the result of the previous SSSE studies (20). The four

active sites show similar kinetic profiles, and reach the steady

states at nearly the same time. Meanwhile, the time-dependent

rate constant per active site in the structure INT appears more

like that in the structure 1C2B, although the difference be-

tween AS1 and AS3 is still similar with that in the structure

1C2O. Additionally, our time-dependent SMOL solver can

show the detailed diffusion process. For the 1C2O case, Fig. 8

describes the ligand concentration distribution in the problem

domain. The red represents high concentration areas, while

the blue represents the low concentration areas.

CONCLUSIONS

In this study, we describe new continuum-based methods for

studying diffusion in biomolecular systems. Specifically, we

present the time-dependent SMOL software package, a finite

element-based set of tools for solving the TDSE to calculate

ligand binding rate constants for large biomolecules under

pre-steady-state and steady-state conditions. The main im-

provement from the previous SMOL solver (9,10) can be

addressed as below: first, the new solver has removed the

drift term (Eq. 2) which is discontinuous for =W, as well

as the asymmetry (47). Theoretically, the new SMOL solver

can utilize the conjugate gradient method, which is a di-

rect method for symmetric and positive definite linear

systems, while the old solver can only solve SSSE with the

FIGURE 7 The dependency of kon(t) values on the

simulation time for the structures 1C2O, INT, and

1C2B: (a) 0.150 M ionic strength and 11.0e ligand;

and (b) neutral ACh-like ligand.

FIGURE 8 Steady-state ligand concentration distribu-

tion under six different ionic strength conditions for

structure 1C2O.
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bi-conjugate gradient method. Compared with the new

solver, the bi-conjugate gradient method is slower and harder

to converge. Therefore, our new SMOL solver can solve

both steady-state and time-dependent problems much more

efficiently and stably than the old version.

With the new code, we solved the time-dependent dif-

fusion in the analytical case of a reactive sphere, mAChE

monomer and tetramer cases. Comparing with previous

steady-state studies, our research extends the study into the

nonequilibrium diffusion dynamics and obtained very con-

sistent results. Moreover, the calculated rates of the mAChE

monomer were compared with experimental data (27) and

show very good agreement with experiment while requiring

substantially less computational effort than existing particle-

based Brownian dynamics methods. Additionally, the value

of kon(t) seems to be underestimated with the coarser meshes,

which is consistent with previous observations (10). Simi-

larly, the kon values in mAChE tetramers should increase if

we refine the original mesh. In the previous study (20) and

this one, we have found the activity of one subunit in a

mAChE tetramer equals ;60–70% that of a free monomer.

With the appropriate meshes, we would expect to obtain an

activity closer to that in the free monomer and the catalytic

activity might not be too affected by subunit association as

suggested in the experiment (48).

Additionally, we describe new adaptive meshing methods

developed to discretize biomolecular systems into finite

element meshes, which respect the geometry of the biomol-

ecule. Although not presented in this study, it is important to

note that the new meshing methods could be useful in a

variety of biological simulations including computational

studies of biomolecular electrophoresis (49), elasticity

(42,43), and electrostatics (35,36,50,51).

Finally, this research lays the groundwork for the inte-

gration of molecular-scale information into simulations of

cellular-scale systems such as the neuromuscular junction

(6,11,52). In particular, this new finite element framework

should facilitate the incorporation of other continuum me-

chanics phenomena into biomolecular simulations. The ulti-

mate goal of this work is to develop scalable methods and

theories that will allow researchers to begin to study biolog-

ical dynamics in a cellular context efficiently and robustly.
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